Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.
Ringed spaceIn mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Algèbre de CliffordEn mathématiques, l'algèbre de Clifford est un objet d'algèbre multilinéaire associé à une forme quadratique. C'est une algèbre associative sur un corps, permettant un type de calcul étendu, englobant les vecteurs, les scalaires et des « multivecteurs » obtenus par produits de vecteurs, et avec une règle de calcul qui traduit la géométrie de la forme quadratique sous-jacente. Le nom de cette structure est un hommage au mathématicien anglais William Kingdon Clifford.
Algèbre involutiveEn mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.
Stack (mathematics)In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
Highly structured ring spectrumIn mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory. Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory.
Braid groupIn mathematics, the braid group on n strands (denoted ), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry.
Groupe du Rubik's CubeCet article présente un modèle mathématique et une présentation du groupe du Rubik's Cube. est le groupe des mouvements légaux ou le groupe des états (sans démonter le cube !). est le groupe élargi ou le groupe des états étendus (ici on peut démonter le cube, mais les mouvements des sommets et des arêtes doivent rester chaqu'un dans leur camp). est l'ensemble des classes d'équivalence pour la congruence modulo n. Il est isomorphe au groupe des n-èmes de tour d'axe donné.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.