Faille transformantevignette|Failles transformantes (en rouge). vignette|Carte mondiale des principales failles transformantes (en vert). Les failles transformantes sont des limites de plaque lithosphérique où il n'y a ni subduction ni création de lithosphère (limite conservative). Elles sont situées en bordure de plaques tectoniques et découpent les dorsales perpendiculairement. Les frontières près de ce type de faille sont géologiquement actives (séismes, volcans...). La faille transformante agit selon un mouvement de coulissage.
Forme multilinéaireEn mathématiques, une forme multilinéaire est une application d'un produit d'espaces vectoriels dans leur corps de coefficients, qui est linéaire en chacune de ses variables. C'est donc un cas particulier d'application multilinéaire. Soient un entier k > 0 et des espaces vectoriels sur un même corps K. Une application est dite multilinéaire (ou plus précisément : k-linéaire) si elle est linéaire en chaque variable, c'est-à-dire si, pour des vecteurs et des scalaires a et b, Un exemple classique de forme multilinéaire est le déterminant.
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Origamivignette|Boites d'origamis. L' est l'art du pliage du papier. Le mot vient du japonais — qui l'aurait lui-même emprunté au chinois (折紙/折纸, pinyin zhézhǐ « plier du papier » —, la tradition japonaise de cet art ayant fortement influencé son histoire en Occident. C'est un des plus anciens arts populaires, au , en Chine. Il y est appelé zhézhǐ (折紙/折纸), et daterait de la dynastie des Han de l'Ouest (−202 – 9) ; il aurait été apporté au Japon par des moines bouddhistes via Koguryŏ (pays recouvrant les actuelles Corées).
Architecturevignette|upright=1.2|La cathédrale Saint-Pierre de Beauvais, , toute en pierre de taille, est l’exemple le plus aérien et dématérialisé de l'architecture gothique qui atteint là ses limites techniques. vignette|upright=1.2|La coupole du Panthéon, construit dans l'Antiquité romaine au début du , est restée de loin la plus large coupole du monde durant de nombreux siècles. Elle ne sera égalée qu'au par le dôme de la cathédrale de Florence qui marque de ce fait le début de la Renaissance, pour n'être dépassée qu'à partir du par les dômes contemporains.
Forme différentielleEn géométrie différentielle, une forme différentielle est la donnée d'un champ d'applications multilinéaires alternées sur les espaces tangents d'une variété différentielle possédant une certaine régularité. Le degré des formes différentielles désigne le degré des applications multilinéaires. La différentielle d'une fonction numérique peut être regardée comme un champ de formes linéaires : c'est le premier exemple de formes différentielles.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Subductionthumb|400px|Coupe schématique d'une zone de subduction avec présence d'un bassin arrière-arc. La subduction est un processus géodynamique d'enfoncement d'une plaque tectonique sous une autre plaque de densité plus faible, en général une plaque océanique sous une plaque continentale ou sous une plaque océanique plus récente, dans un contexte de convergence. Les géologues disent que la plaque plongeante subduit (ou subducte) sous la plaque chevauchante.
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.