Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Échelle de Kardachevvignette|upright=1.5|alt=Photo en couleur. En avant-plan, un observatoire astronomique émet un rayon de lumière verticalement. En arrière-plan se dessine un amas d'étoiles dans la nuit.|À l'observatoire du Cerro Paranal, utilisation d'un rayon laser pour créer une étoile artificielle servant au réglage du Very Large Telescope (VLT). La recherche d'exoplanètes sur lesquelles pourraient se trouver des civilisations extraterrestres fait partie des nombreuses missions du VLT.
Détection de collisionDans les simulations physiques, les jeux vidéo et la géométrie algorithmique, la détection de collision implique l'utilisation d'algorithmes pour tester les collisions (intersection de solides donnés), pour calculer des trajectoires, les dates d'impact et des points d'impact dans une simulation physique. right|thumb|Des billes de billard s'entrechoquant est un exemple typique du domaine de la détection de collision. Dans la simulation physique, on souhaite procéder à des expériences, comme jouer au billard.
Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Polygonal modelingIn 3D computer graphics, polygonal modeling is an approach for modeling objects by representing or approximating their surfaces using polygon meshes. Polygonal modeling is well suited to scanline rendering and is therefore the method of choice for real-time computer graphics. Alternate methods of representing 3D objects include NURBS surfaces, subdivision surfaces, and equation-based (implicit surface) representations used in ray tracers. The basic object used in mesh modeling is a vertex, a point in three-dimensional space.
OmégaOméga (capitale Ω, minuscule ω ; en grec ωμέγα) est la et dernière lettre de l'alphabet grec, précédée par psi. En grec ancien, la lettre oméga représente la voyelle mi-ouverte postérieure arrondie longue . En grec moderne, elle représente le même phonème que la lettre omicron, c'est-à-dire la voyelle mi-fermée postérieure arrondie brève . Dans le système de numération grecque, oméga vaut 800 ; par exemple ωʹ représente le nombre 800.
Quantité vocaliqueLa quantité vocalique est la longueur ou durée d'une voyelle. En effet, une voyelle peut être brève ou longue ; de nombreuses langues, notamment le latin classique, l'arabe et le grec ancien, font usage de cette distinction dans leur phonologie. La quantité vocalique est généralement marquée en philologie par un signe diacritique : une brève pour les voyelles brèves (Ă, ă) et un macron pour les voyelles longues (Ā, ā).
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Aire (géométrie)thumb|L'aire du carré vaut ici 4. En mathématiques, l'aire est une grandeur relative à certaines figures du plan ou des surfaces en géométrie dans l'espace. Le développement de cette notion mathématique est lié à la rationalisation du calcul de grandeur de surfaces agricoles, par des techniques d'arpentage. Cette évaluation assortie d'une unité de mesure est aujourd'hui plutôt appelée superficie. Informellement, l'aire permet d'exprimer un rapport de grandeur d'une figure relativement à une unité, par le biais de découpages et recollements, de déplacements et retournements et de passage à la limite par approximation.
Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.