Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Symétrie CPTLa symétrie CPT est une symétrie des lois physiques pour les transformations impliquant de manière simultanée la charge, la parité et le temps. Les efforts de recherche menés à la fin des années 1950 ont révélé la violation de la symétrie P par des phénomènes impliquant la force faible, et il existe des violations connues de la symétrie C ainsi que de la symétrie T. Pendant un temps, la symétrie CP paraissait être conservée pour tous les phénomènes physiques, mais cela a été démenti aussi par la suite.
Anomalie (physique)En théorie quantique des champs, on dit qu'une symétrie de la théorie possède une anomalie (ou que la symétrie est anormale) lorsqu'elle est une invariance classique au niveau de l'action mais qu'elle est brisée une fois que la théorie est quantifiée. Plus précisément une anomalie survient lorsque le courant de Noether est conservé au niveau classique mais que les interactions quantiques brisent cette conservation. Cet article présente les différents types d'anomalies que l'on peut rencontrer en physique théorique.
Transformations de LorentzCet article présente les transformations de Lorentz sous un aspect technique. Le lecteur désireux d'obtenir des informations physiques plus générales à ce sujet pourra se référer à l'article Relativité restreinte. thumb|Hendrik Lorentz en 1916. Les transformations de Lorentz sont des transformations linéaires des coordonnées d'un point de l'espace-temps de Minkowski à quatre dimensions.
Groupe de Poincaré (transformations)Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT).
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Gravitational anomalyIn theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.
Groupe de LorentzLe groupe de Lorentz est le groupe mathématique constitué par l'ensemble des transformations de Lorentz de l'espace de Minkowski. Les formules mathématiques : des lois de la cinématique de la relativité restreinte ; des équations de champ de Maxwell dans la théorie de électromagnétisme ; de l'équation de Dirac dans la théorie de l'électron sont toutes invariantes sous les transformations de Lorentz. En conséquence, le groupe de Lorentz exprimerait la symétrie fondamentale de plusieurs lois de la nature.
Gauge anomalyIn theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory. All gauge anomalies must cancel out. Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to cancel degrees of freedom with a negative norm which are unphysical (such as a photon polarized in the time direction). Indeed, cancellation occurs in the Standard Model.