Polynôme non commutatifIn mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Caractéristique d'un anneauEn algèbre, la caractéristique d'un anneau (unitaire) A est par définition l'ordre pour la loi additive de l'élément neutre de la loi multiplicative si cet ordre est fini ; si cet ordre est infini, la caractéristique de l'anneau est par définition zéro. On note, pour un anneau unitaire (A, +, ×), 0A l'élément neutre de « + » et 1A celui de « × ». La caractéristique d'un anneau A est donc le plus petit entier n > 0 tel que si un tel entier existe. Dans le cas contraire (autrement dit si 1A est d'ordre infini), la caractéristique est nulle.
Groupe de WeylEn mathématiques, et en particulier dans la théorie des algèbres de Lie, le groupe de Weyl d'un système de racines , nommé ainsi en hommage à Hermann Weyl, est le sous-groupe du groupe d'isométries du système de racines engendré par les réflexions orthogonales par rapport aux hyperplans orthogonaux aux racines. Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12.
Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Matrice antisymétriqueEn mathématiques, et plus précisément en algèbre linéaire, une matrice antisymétrique est une matrice carrée opposée à sa transposée. Une matrice carrée A à coefficients dans un anneau quelconque est dite antisymétrique si sa transposée est égale à son opposée, c'est-à-dire si elle satisfait à l'équation : A = –A ou encore, en l'écrivant avec des coefficients sous la forme A = (ai,j), si : pour tout i et j, aj,i = –ai,j Les matrices suivantes sont antisymétriques : Le cas où la matrice est à coefficients dans un anneau de caractéristique 2 est très particulier.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
Weyl equationIn physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).