Fibré cotangentEn géométrie différentielle, le fibré cotangent associé à une variété différentielle M est le fibré vectoriel T*M de son fibré tangent TM : en tout point m de M, l' est défini comme l'espace dual de l'espace tangent : Les sections lisses du fibré cotangent sont les 1-formes différentielles, l'une d'entre elles étant remarquable et appelée 1-forme tautologique (ou 1-forme de Poincaré, ou 1-forme de Liouville, ou 1-forme canonique, ou potentiel symplectique). Sa dérivée extérieure donne une 2-forme symplectique canonique.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Crochet de PoissonEn mécanique hamiltonienne, on définit le crochet de Poisson de deux observables et , c'est-à-dire de deux fonctions sur l'espace des phases d'un système physique, par : où les variables, dites canoniques, sont les coordonnées généralisées et les moments conjugués . C'est un cas particulier de crochet de Lie. Avant de continuer, soulignons au passage qu'il existe deux conventions de signes au crochet de Poisson. La définition donnée ci-haut est dans la convention de signe employée par Dirac, Arnold , Goldstein et de Gosson pour n'en citer que quelques-uns.
Fibré tangentEn mathématiques, et plus précisément en géométrie différentielle, le fibré tangent TM associé à une variété différentielle M est la somme disjointe de tous les espaces tangents en tous les points de la variété, soit : où est l'espace tangent de M en x. Un élément de TM est donc un couple (x, v) constitué d'un point x de M et d'un vecteur v tangent à M en x. Le fibré tangent peut être muni d'une topologie découlant naturellement de celle de M.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Fluide (matière)Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les liquides, les gaz et les plasmas. Gaz et plasmas sont très compressibles, tandis que les liquides le sont très peu (à peine plus que les solides). La transition de l'état liquide à l'état gazeux (ou réciproquement) est en général de premier ordre, c'est-à-dire brusque, discontinue.
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Cotangent spaceIn differential geometry, the cotangent space is a vector space associated with a point on a smooth (or differentiable) manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.