Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
Reflection groupIn group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections (by the Cartan–Dieudonné theorem), it is a continuous group (indeed, Lie group), not a discrete group, and is generally considered separately.
Complex reflection groupIn mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise. Complex reflection groups arise in the study of the invariant theory of polynomial rings. In the mid-20th century, they were completely classified in work of Shephard and Todd. Special cases include the symmetric group of permutations, the dihedral groups, and more generally all finite real reflection groups (the Coxeter groups or Weyl groups, including the symmetry groups of regular polyhedra).
Complex polytopeIn geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A complex polytope may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on. Precise definitions exist only for the regular complex polytopes, which are configurations.
Groupe de WeylEn mathématiques, et en particulier dans la théorie des algèbres de Lie, le groupe de Weyl d'un système de racines , nommé ainsi en hommage à Hermann Weyl, est le sous-groupe du groupe d'isométries du système de racines engendré par les réflexions orthogonales par rapport aux hyperplans orthogonaux aux racines. Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12.
Groupe diédralEn mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Weyl equationIn physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).