CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Cohomologie de De RhamEn mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Homologie de HochschildL’homologie de Hochschild et la cohomologie de Hochschild sont des théories homologiques et cohomologiques définies à l'origine pour les algèbres associatives, mais qui ont été généralisées à des catégories plus générales. Elles ont été introduites par Gerhard Hochschild en 1945. La cohomologie cyclique développée par Alain Connes et Jean-Louis Loday en est une généralisation. La cohomologie de Hochschild classifie les de la structure multiplicative de l'algèbre considérée, et d'une manière générale l'homologie comme la cohomologie de Hochschild possèdent une riche structure algébrique.
Cohomologie étaleLa cohomologie étale est la théorie cohomologique des faisceaux associée à la topologie étale. Elle mime le comportement habituel de la cohomologie classique sur des objets mathématiques où celle-ci n'est pas envisageable, en particulier les schémas et les espaces analytiques. La cohomologie étale a été introduite pour les schémas par Alexander Grothendieck et Michael Artin dans SGA 4 et 41⁄2, avec l'objectif de réaliser une cohomologie de Weil et ainsi résoudre les conjectures de Weil, objectif partiellement rempli, plus tard complété par Pierre Deligne avec l'introduction de la cohomologie l-adique.
Coherent sheaf cohomologyIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Suite spectraleEn algèbre homologique et en topologie algébrique, une suite spectrale est une suite de modules différentiels (En,dn) tels que En+1 = H(En) = Ker dn / dn est l'homologie de En. Elles permettent donc de calculer des groupes d'homologie par approximations successives. Elles ont été introduites par Jean Leray en 1946. Il y a plusieurs manières en pratique pour obtenir une telle suite. Historiquement, depuis 1950, les arguments des suites spectrales ont été un outil performant pour la recherche, notamment dans la théorie de l'homotopie.