Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.
Nombre double de MersenneEn mathématiques, un nombre double de Mersenne est un nombre de Mersenne de la forme où n est un entier strictement positif et M désigne le n-ième nombre de Mersenne. Les plus petits nombres doubles de Mersenne sont donc : M = M = 1 ; M = M = 7 ; M = M = 127 ; M = M = = 7 × 31 × 151 ; M = M = 2 147 483 647 ; M = M = = 7 × 73 × 127 × 337 × × ; M = M = . Puisqu'un nombre de Mersenne M ne peut être premier que si n est premier (condition nécessaire mais pas suffisante), un nombre double de Mersenne M ne peut être premier que si M est un nombre de Mersenne premier (ce qui nécessite avant tout que p le soit : on a vu par exemple que M et M ne sont pas premiers).
Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Formules pour les nombres premiersEn mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux.
Caractéristique d'un anneauEn algèbre, la caractéristique d'un anneau (unitaire) A est par définition l'ordre pour la loi additive de l'élément neutre de la loi multiplicative si cet ordre est fini ; si cet ordre est infini, la caractéristique de l'anneau est par définition zéro. On note, pour un anneau unitaire (A, +, ×), 0A l'élément neutre de « + » et 1A celui de « × ». La caractéristique d'un anneau A est donc le plus petit entier n > 0 tel que si un tel entier existe. Dans le cas contraire (autrement dit si 1A est d'ordre infini), la caractéristique est nulle.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Décomposition en produit de facteurs premiersvignette|Décomposition du nombre 864 en facteurs premiers En mathématiques et plus précisément en arithmétique, la décomposition en produit de facteurs premiers, aussi connue comme la factorisation entière en nombres premiers ou encore plus couramment la décomposition en facteurs premiers, consiste à chercher à écrire un entier naturel non nul sous forme d'un produit de nombres premiers. Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 3 × 5, soit 3 × 3 × 5.