Espace séparableEn mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous-ensemble dense et au plus dénombrable, c'est-à-dire contenant un ensemble fini ou dénombrable de points dont l'adhérence est égale à l'espace topologique tout entier. espace à base dénombrable Tout espace à base dénombrable est séparable. La réciproque est fausse, mais : Tout espace pseudométrisable séparable est à base dénombrable.Beaucoup d'espaces usuels sont de ce type.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Attirance physiqueL'attirance physique désigne l'attirance esthétique que dégage le physique d'un être humain. L'attirance physique sous-entend le plus souvent une attirance sexuelle, même si l'attirance physique influence les comportements sociaux dans de nombreux autres cas de figure où il n'y a aucune intentionnalité sexuelle. L'attractivité physique est une caractéristique importante qui suggère la fertilité (chez les femelles), la bonne alimentation (chez les mâles) et la bonne santé (dans les deux sexes).
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Espace de MontelEn topologie des espaces vectoriels, on appelle espace de Montel un espace vectoriel topologique localement convexe séparé, tonnelé et dont tout fermé borné est compact. Le nom provient du mathématicien Paul Montel. Tout espace de Montel est réflexif et quasi complet. Son dual fort est un espace de Montel. Le quotient d'un espace de Fréchet-Montel par un sous-espace fermé peut n'être pas réflexif, et a fortiori ne pas être un espace de Montel (en revanche, le quotient d'un espace de Fréchet-Schwartz par un sous-espace fermé est un espace de Fréchet-Montel).
Facial symmetryFacial symmetry is one specific measure of bodily symmetry. Along with traits such as averageness and youthfulness it influences judgments of aesthetic traits of physical attractiveness and beauty. For instance, in mate selection, people have been shown to have a preference for symmetry. Facial bilateral symmetry is typically defined as fluctuating asymmetry of the face comparing random differences in facial features of the two sides of the face.
Direct integralIn mathematics and functional analysis a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of (what are now called) von Neumann algebras on separable Hilbert spaces to the classification of so-called factors.
Convolution de DirichletEn mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.