Programme informatiqueUn programme informatique est un ensemble d'instructions et d’opérations destinées à être exécutées par un ordinateur. Un programme source est un code écrit par un informaticien dans un langage de programmation. Il peut être compilé vers une forme binaire ou directement interprété. Un programme binaire décrit les instructions à exécuter par un microprocesseur sous forme numérique. Ces instructions définissent un langage machine.
Programmation informatiquevignette|Liste d'instructions sur le Commodore 64 La programmation, appelée aussi codage dans le domaine informatique, désigne l'ensemble des activités qui permettent l'écriture des programmes informatiques. C'est une étape importante du développement de logiciels (voire de matériel). L'écriture d'un programme se fait dans un langage de programmation. Un logiciel est un ensemble de programmes (qui peuvent être écrits dans des langages de programmation différents) destiné à la réalisation de certaines tâches par un (ou plusieurs) utilisateurs du logiciel.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Algebra representationIn abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.
Représentation régulièreEn mathématiques et plus précisément en théorie des groupes, les représentations régulières (gauche et droite) d'un groupe G sont les représentations de G associées aux deux actions (à gauche et à droite) de G sur lui-même par translation. Si G est un groupe fini ce sont, pour un corps fixé K, deux actions linéaires de G sur le K-espace vectoriel KG des applications de G dans K. Si G est un groupe localement compact, ce sont deux représentations continues unitaires de G sur un certain espace de Hilbert inclus dans CG.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Ensembles disjointsvignette|Trois ensembles disjoints En mathématiques, deux ensembles sont dits disjoints s'ils n'ont pas d'éléments en commun. Par exemple, et sont deux ensembles disjoints. De manière formelle, deux ensembles A et B sont disjoints si leur intersection est l'ensemble vide, c'est-à-dire si (Dans le cas contraire, on dit que A et B « se rencontrent ».) Cette définition s'étend à une famille d'ensembles. Les ensembles d'une famille sont dits disjoints deux à deux ou mutuellement disjoints si deux ensembles quelconques de cette famille sont disjoints.