Indefinite orthogonal groupIn mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1.
Produit semi-directEn théorie des groupes, le produit semi-direct permet de définir un groupe G à partir de deux groupes H et K, et généralise la notion de produit direct de deux groupes. Un groupe G est produit semi-direct interne d'un sous-groupe normal H par un sous-groupe K si et seulement si l'une des définitions équivalentes suivantes est vérifiée : (en d'autres termes, H et K sont compléments l'un de l'autre dans G) ; (tout élément de G s'écrit de manière unique comme produit d'un élément de H et d'un élément de K) ; la restriction à K de la surjection canonique est un isomorphisme entre et ; la surjection canonique se scinde par un morphisme tel que .
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Orthogonal transformationIn linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases. Orthogonal transformations are injective: if then , hence , so the kernel of is trivial.
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
Matrice laplacienneEn théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Direct sum of groupsIn mathematics, a group G is called the direct sum of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.