Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Statistique exhaustiveLes statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Fonction de masse (probabilités)En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).
Processus de LévyEn théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
Continuum percolation theoryIn mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space Rn). More specifically, the underlying points of discrete percolation form types of lattices whereas the underlying points of continuum percolation are often randomly positioned in some continuous space and form a type of point process. For each point, a random shape is frequently placed on it and the shapes overlap each with other to form clumps or components.
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Processus de Poisson composéUn processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
Dynamique des systèmesLa dynamique des systèmes fait partie de la théorie des systèmes. C'est une approche pour comprendre le comportement des systèmes complexes dans le temps en les représentant par des systèmes dynamiques. Elle prend en compte les boucles de rétroaction internes et les effets retard qui affectent le comportement global du système. Elle est fondée sur des modèles qui sont une formalisation de nos suppositions à propos d’un système (Hall and Day, 1977).
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Mouvement brownienvignette|Simulation de mouvement brownien pour cinq particules (jaunes) qui entrent en collision avec un lot de 800 particules. Les cinq chemins bleus représentent leur trajet aléatoire dans le fluide. Le mouvement brownien, ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule immergée dans un liquide et qui n'est soumise à aucune autre interaction que des chocs avec les « petites » molécules du fluide environnant.