Calcul fonctionnel holomorpheEn mathématiques, et plus précisément en analyse, le calcul fonctionnel holomorphe désigne l'application du calcul fonctionnel aux fonctions holomorphes, c'est-à-dire qu'étant donnés une fonction holomorphe ƒ de la variable complexe z et un opérateur linéaire T, l'objectif est de construire un opérateur f (T) étendant ƒ de manière « naturelle ». Le cas le plus fréquent est celui où T est un opérateur borné sur un espace de Banach.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Continuous functional calculusIn mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra. Theorem. Let x be a normal element of a C*-algebra A with an identity element e. Let C be the C*-algebra of the bounded continuous functions on the spectrum σ(x) of x. Then there exists a unique mapping π : C → A, where π(f) is denoted f(x), such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = x, where id denotes the function z → z on σ(x).
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Extensions of symmetric operatorsIn functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self-adjoint extensions. This problem arises, for example, when one needs to specify domains of self-adjointness for formal expressions of observables in quantum mechanics. Other applications of solutions to this problem can be seen in various moment problems. This article discusses a few related problems of this type.
Special classes of semigroupsIn mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
Demi-groupe de transformationsEn algèbre, un demi-groupe de transformations est un ensemble de fonctions d'un ensemble X dans lui-même qui est fermé pour l'opération de composition. S'il contient l'application identité, c'est un monoïde de transformations. C'est l'analogue, pour les demi-groupes, d'un groupe de permutations. Un analogue du théorème de Cayley vaut pour les demi-groupes : tout demi-groupe est isomorphe à un demi-groupe de transformations sur un ensemble. Un demi-groupe de transformations est un couple , où est un ensemble, et est un demi-groupe de transformations sur .
Semigroup actionIn algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).