Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Perturbation (astronomie)Perturbation est un terme utilisé en astronomie en relation avec la description du mouvement complexe d'un objet massif soumis aux effets gravitationnels significatifs de plus d'un autre objet massif. Un tel mouvement complexe peut être décomposé schématiquement en composantes. Premièrement, il y a le mouvement hypothétique que le corps suivrait, s'il se déplaçait sous l'effet gravitationnel de l'autre corps seulement. Exprimé en d'autres termes, un tel mouvement peut être vu comme une solution du problème à deux corps, ou d'une orbite képlérienne non perturbée.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Equilibrium pointIn mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation. The point is an equilibrium point for the differential equation if for all . Similarly, the point is an equilibrium point (or fixed point) for the difference equation if for . Equilibria can be classified by looking at the signs of the eigenvalues of the linearization of the equations about the equilibria.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.