Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Complexe simplicialthumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Graphe régulierEn théorie des graphes, un graphe régulier est un graphe où tous les sommets ont le même nombre de voisins, c'est-à-dire le même degré ou valence. Un graphe régulier dont les sommets sont de degré est appelé un graphe -régulier ou graphe régulier de degré . Un graphe 0-régulier est un ensemble de sommets déconnectés; un graphe 1-régulier a un nombre pair de sommets et est un ensemble d'arêtes déconnectées ou couplage; enfin, un graphe 2-régulier est un ensemble de cycles déconnectés.
Convex polytopeA convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.
4-polytopeEn géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Integral polytopeIn geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively. An -dimensional regular simplex can be represented as an integer polytope in , the convex hull of the integer points for which one coordinate is one and the rest are zero.
Abstract simplicial complexIn combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).