Semiregular polytopeIn geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition. In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular.
Integral polytopeIn geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively. An -dimensional regular simplex can be represented as an integer polytope in , the convex hull of the integer points for which one coordinate is one and the rest are zero.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Polyèdre uniformeUn polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal, c'est-à-dire que pour tout couple de sommets, il existe une isométrie qui applique un sommet sur l'autre. Il en découle que tous les sommets sont congruents et que le polyèdre possède un haut degré de symétrie par réflexion et rotation. La notion de polyèdre uniforme est généralisée, pour un nombre de dimensions quelconque, par celle de . Les polyèdres uniformes peuvent être réguliers, quasi réguliers ou semi-réguliers.
Liste des polyèdres uniformesCette liste recense les polyèdres uniformes, ainsi que certaines de leurs propriétés. page connexe : Polyèdre régulier Un polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal (c'est-à-dire que pour tout couple de ses sommets, il existe une isométrie du polyèdre qui transforme l'un en l'autre).
Stellationdroite|vignette|200px|Exemple de la stellation en trois dimensions, ici un dodécaèdre étoilé En géométrie, la stellation est un procédé de construction de nouveaux polygones (en dimension 2), de nouveaux polyèdres (en 3D), ou, en général, de nouveaux polytopes en dimension n, en étendant les arêtes ou faces planes, généralement de manière symétrique, jusqu'à ce que chacune d'entre elles se rejoignent de nouveau. La nouvelle figure, avec un aspect étoilé, est appelée une stellation de l'original.
Simple polytopeIn geometry, a d-dimensional simple polytope is a d-dimensional polytope each of whose vertices are adjacent to exactly d edges (also d facets). The vertex figure of a simple d-polytope is a (d – 1)-simplex. Simple polytopes are topologically dual to simplicial polytopes. The family of polytopes which are both simple and simplicial are simplices or two-dimensional polygons. A simple polyhedron is a three-dimensional polyhedron whose vertices are adjacent to three edges and three faces.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Arête (géométrie)En géométrie dans l'espace, une arête est une droite délimitant deux demi-plans qui constituent les faces d’un angle diédral, ou plus spécialement le côté d’une face d’un polyèdre. Plus généralement, une arête d'un solide géométrique est la ligne d'intersection de deux surfaces de ce solide. À ce titre, l'arête n'est pas nécessairement une droite euclidienne. Un angle formé par deux demi-droites perpendiculaires à l’arête, issues d'un point de l’arête et incluses dans chacune des faces d’un dièdre, ne dépend pas du choix du point.
Projection cartographiqueLa projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte. L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter.