Asymétrie (statistiques)En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Loi normale généraliséeEn théorie des probabilités et en statistique, la loi normale généralisée ou loi gaussienne généralisée désigne deux familles de lois de probabilité à densité dont les supports sont l'ensemble des réels. Cette loi rajoute un paramètre de forme à la loi normale. Pour les différencier, les deux familles seront appelées « version 1 » et « version 2 », ce ne sont cependant pas des appellations standards. La densité de probabilité des lois de cette famille est donnée par la formule : où est la fonction gamma, est un paramètre de position, est un paramètre d'échelle et est un paramètre de forme.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Asymptotic distributionIn mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators. A sequence of distributions corresponds to a sequence of random variables Zi for i = 1, 2, ..., I .
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Generalized logistic distributionThe term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below. Type I has also been called the skew-logistic distribution. Type IV subsumes the other types and is obtained when applying the logit transform to beta random variates. Following the same convention as for the log-normal distribution, type IV may be referred to as the logistic-beta distribution, with reference to the standard logistic function, which is the inverse of the logit transform.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...