Deming regressionIn statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model which tries to find the line of best fit for a two-dimensional dataset. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis. It is a special case of total least squares, which allows for any number of predictors and a more complicated error structure.
Fusion par confinement magnétiqueLa fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Moment d'une forceLe moment d'une force par rapport à un point donné est une grandeur physique vectorielle traduisant l'aptitude de cette force à faire tourner un système mécanique autour de ce point, souvent appelé pivot. Il s'exprime habituellement en (newtons mètres) par radian, et peut l'être de manière équivalente en joules par radian. Le moment d'un ensemble de forces, et notamment d'un couple, est la somme (géométrique) des moments de ces forces.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Direct-drive mechanismA direct-drive mechanism is a mechanism design where the force or torque from a prime mover is transmitted directly to the effector device (such as the drive wheels of a vehicle) without involving any intermediate couplings such as a gear train or a belt. In the late 19th century and early 20th century, some of the earliest locomotives and cars used direct drive transmissions at higher speeds. Direct-drive mechanisms for industrial arms began to be possible in the 1980s, with the use of rare-earth magnetic materials.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.