Onde de Lovethumb|Aspect du déplacement L'onde de Love est un type d'onde se propageant à la surface d'un milieu solide semi-infini, et notamment d'onde sismique. Elle a été découverte par Augustus Edward Hough Love en 1911. Son déplacement est comparable à celui des ondes S sans le mouvement vertical. Les ondes de Love provoquent un ébranlement horizontal qui est la cause de nombreux dégâts aux fondations d'un édifice qui n'est pas une construction parasismique. Les ondes de Love se propagent à environ . Catégorie:Sis
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Onde de RayleighL'onde de Rayleigh ou onde R est un type d'onde sismique. Elle a été découverte par John William Strutt Rayleigh en 1885. Son déplacement est complexe, assez semblable à celui d'une poussière portée par une vague, constituant un mouvement à la fois horizontal et vertical. vignette|Mouvement des particules d'une onde de Rayleigh. vignette|Comparaison de la vitesse de l'onde de Rayleigh avec les vitesses des ondes de cisaillement et longitudinales pour un matériau élastique isotrope.
Surface waveIn physics, a surface wave is a mechanical wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along with a refractive index gradient or along an interface between two media having different dielectric constants.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
One-way wave equationA one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions. In the one-dimensional case, the one-way wave equation allows wave propagation to be calculated without the mathematical complication of solving a 2nd order differential equation.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.