Formule des traces de SelbergEn mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions sur un espace homogène G/Γ, où G est un groupe de Lie et Γ un groupe discret, ou plus généralement sur un double quotient H\G/Γ. Un cas particulier important est celui où l'espace est une surface de Riemann compacte S.
Théorie d'IwasawaLa théorie d'Iwasawa peut être vue comme une tentative d'étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite des extensions finies vers les extensions infinies. Les objets de base de la théorie d'Iwasawa sont les -extensions ; c'est-à-dire des extensions galoisiennes dont le groupe de Galois est le groupe profini , pour un nombre premier fixé.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Réseau (sous-groupe discret)En théorie des groupes le terme réseau désigne un sous-groupe d'un groupe topologique localement compact vérifiant les conditions suivantes : est discret dans , ce qui est équivalent à la condition qu'il existe un voisinage ouvert de l'identité de tel que ; est de covolume fini dans , c'est-à-dire qu'il existe sur l'espace quotient une mesure Borélienne de masse totale finie et invariante par (agissant par translations à droite). Un réseau est dit uniforme quand le quotient est compact. On dit alors que est un réseau de .
Interpolation linéaireright|300px|thumb|Les points rouges correspondent aux points (xk,yk), et la courbe bleue représente la fonction d'interpolation, composée de segments de droite. L’interpolation linéaire est la méthode la plus simple pour estimer la valeur prise par une fonction continue entre deux points déterminés (interpolation). Elle consiste à utiliser pour cela la fonction affine (de la forme f(x) = m.x + b) passant par les deux points déterminés.
Conjectures de WeilEn mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies.
G2 (mathématiques)En mathématiques, G2 est le plus petit des groupes de Lie complexes de type exceptionnel. Son algèbre de Lie est notée . G2 est de rang 2 et de dimension 14. Sa forme compacte est simplement connexe, et sa forme déployée a un groupe fondamental d'ordre 2. Son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 7. La forme compacte de G2 peut être décrite comme le groupe d'automorphismes de l'algèbre octonionique. (1,−1,0),(−1,1,0) (1,0,−1),(−1,0,1) (0,1,−1),(0,−1,
Groupe de Poincaré (transformations)Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT).
Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Lie groupoidIn mathematics, a Lie groupoid is a groupoid where the set of s and the set of morphisms are both manifolds, all the operations (source and target, composition, identity-assigning map and inversion) are smooth, and the source and target operations are submersions. A Lie groupoid can thus be thought of as a "many-object generalization" of a Lie group, just as a groupoid is a many-object generalization of a group. Accordingly, while Lie groups provide a natural model for (classical) continuous symmetries, Lie groupoids are often used as model for (and arise from) generalised, point-dependent symmetries.