Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Force électromagnétiquevignette|Force de Lorentz agissant sur des particules chargées se déplaçant rapidement dans une chambre à bulles. Les trajectoires de charge positive et négative se courbent dans des directions opposées.La force électromagnétique ou force de Lorentz est la force subie par une particule chargée dans un champ électromagnétique. C'est la principale manifestation de l'interaction électromagnétique. Cette force, appliquée dans diverses situations, induit l'ensemble des interactions électriques et magnétiques observées ; elle est de ce fait principalement étudiée en physique et en chimie.
Spherical basisIn pure and applied mathematics, particularly quantum mechanics and computer graphics and their applications, a spherical basis is the basis used to express spherical tensors. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. While spherical polar coordinates are one orthogonal coordinate system for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed from the standard basis and use complex numbers.
Forme multilinéaireEn mathématiques, une forme multilinéaire est une application d'un produit d'espaces vectoriels dans leur corps de coefficients, qui est linéaire en chacune de ses variables. C'est donc un cas particulier d'application multilinéaire. Soient un entier k > 0 et des espaces vectoriels sur un même corps K. Une application est dite multilinéaire (ou plus précisément : k-linéaire) si elle est linéaire en chaque variable, c'est-à-dire si, pour des vecteurs et des scalaires a et b, Un exemple classique de forme multilinéaire est le déterminant.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Fonction harmoniqueEn mathématiques, une fonction harmonique est une fonction qui satisfait l'équation de Laplace. Un problème classique concernant les fonctions harmoniques est le problème de Dirichlet : étant donné une fonction continue définie sur la frontière d'un ouvert, peut-on la prolonger par une fonction qui soit harmonique en tout point de l'ouvert ? L'équation est appelée équation de Laplace. Une fonction harmonique est donc, par définition, une solution de cette équation. Les fonctions constantes sont harmoniques sur .