Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Espace homogèneEn géométrie, un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l'optique du programme d'Erlangen, le groupe représente des symétries préservant la géométrie de l'espace, et le caractère homogène se manifeste par l'indiscernabilité des points, et exprime une notion disotropie. Les éléments de l'espace forment une seule orbite selon G. Les espaces des géométries classiques (en dimension finie quelconque) de points sont des espaces homogènes pour leur groupe de symétries.
Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Espace symétriqueEn mathématiques, et plus spécifiquement en géométrie différentielle, un espace symétrique est une variété, espace courbe sur lequel on peut définir une généralisation convenable de la notion de symétrie centrale. La définition précise de la notion d'espace symétrique dépend du type de structure dont on munit la variété. Le plus couramment, on entend par espace symétrique une variété munie d'une métrique riemannienne pour laquelle l'application de symétrie le long des géodésiques constitue une isométrie.
Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Quasi-catégorieEn mathématiques, plus précisément en théorie des catégories, une quasi-catégorie est une généralisation de la notion de catégorie. L'étude de telles généralisations est connue sous le nom de théorie des catégories supérieures. Les quasi-catégories ont été introduites par et Vogt en 1973. André Joyal a fait beaucoup progresser l'étude des quasi-catégories en montrant qu’il existe un analogue pour les quasi-catégories de la plupart des notions de base de la théorie des catégories et même de certaines notions et théorèmes d’un niveau plus avancé.
Espace de HardyLes espaces de Hardy, dans le domaine mathématique de l'analyse fonctionnelle, sont des espaces de fonctions analytiques sur le disque unité D du plan complexe. Soit f une fonction holomorphe sur D, on sait que f admet un développement en série de Taylor en 0 sur le disque unité : On dit alors que f est dans l'espace de Hardy H(D) si la suite appartient à l. Autrement dit, on a : On définit alors la norme de f par : La fonction appartient à H(D), par convergence de la série (série de Riemann convergente).
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.