Forme quadratique binaireEn mathématiques, une forme quadratique binaire est une forme quadratique — c'est-à-dire un polynôme homogène de degré 2 — en deux variables : Les propriétés d'une telle forme dépendent de façon essentielle de la nature des coefficients a, b, c, qui peuvent être par exemple des nombres réels ou rationnels ou, ce qui rend l'étude plus délicate, entiers. Fermat considérait déjà des formes quadratiques binaires entières, en particulier pour son théorème des deux carrés.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Algèbre de LieEn mathématiques, une algèbre de Lie, nommée en l'honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d'un crochet de Lie, c'est-à-dire d'une loi de composition interne bilinéaire, alternée, et qui vérifie la relation de Jacobi. Une algèbre de Lie est un cas particulier d'algèbre sur un corps. Soit K un corps commutatif. Une algèbre de Lie sur K est un espace vectoriel sur K muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Le produit est appelé crochet de Lie (ou simplement crochet) de et .
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
C*-algèbreEn mathématiques, une C*-algèbre (complexe) est une algèbre de Banach involutive, c’est-à-dire un espace vectoriel normé complet sur le corps des complexes, muni d'une involution notée , et d'une structure d'algèbre complexe. Elle est également nommée algèbre stellaire. Les C*-algèbres sont des outils importants de la géométrie non commutative. Cette notion a été formalisée en 1943 par Israel Gelfand et Irving Segal. Les algèbres stellaires sont centrales dans l'étude des représentations unitaires de groupes localement compacts.
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Fonction quadratiqueEn mathématiques, une fonction quadratique est une fonction de plusieurs variables polynomiale de degré 2. Cette notion généralise ainsi celle de fonction du second degré. Elle réalise aussi la partie régulière du développement de Taylor à l’ordre 2 pour une fonction de plusieurs variables. La matrice hessienne associée est la même en tout point, et ne dépend que de la forme quadratique constituée par les termes de degré 2. Elle permet aussi d’écrire le système d'équations linéaires qui détermine les points critiques de la fonction.
Théorème de WittEn algèbre, le théorème de Witt est un résultat sur lequel s'appuie toute la théorie des formes quadratiques. Il permet en effet de classifier les formes quadratiques sur un corps K donné et fonde la définition du groupe de Witt de K. À proprement parler il existe plusieurs énoncés qui sont qualifiés de théorèmes de Witt : pour préciser, on les appelle théorèmes de décomposition, d'extension et d'annulation de Witt. Dans ce faisceau de résultats, obtenus par Ernst Witt en 1937, c'est le théorème d'annulation qui est le plus souvent appelé le théorème de Witt.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.