Catégorie de modèlesEn mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
Situated learningSituated learning is a theory that explains an individual's acquisition of professional skills and includes research on apprenticeship into how legitimate peripheral participation leads to membership in a community of practice. Situated learning "takes as its focus the relationship between learning and the social situation in which it occurs". The theory is distinguished from alternative views of learning which define learning as the acquisition of propositional knowledge.
Situated cognitionSituated cognition is a theory that posits that knowing is inseparable from doing by arguing that all knowledge is situated in activity bound to social, cultural and physical contexts. Situativity theorists suggest a model of knowledge and learning that requires thinking on the fly rather than the storage and retrieval of conceptual knowledge. In essence, cognition cannot be separated from the context. Instead knowing exists, in situ, inseparable from context, activity, people, culture, and language.
Limite (théorie des catégories)La notion de limite est une construction catégorique abstraite, qui rend compte d'objets tels que les produits, les produits fibrés et les limites projectives. La construction duale, la colimite, rend compte entre autres des coproduits, sommes amalgamées et limites inductives. Dans certains cas, cette notion coïncide avec la limite au sens de l'analyse. Soit une catégorie. On considère un diagramme dans , traduit par un foncteur . Dans de nombreux cas, on considère une petite catégorie, voire finie, et on parle respectivement de petit diagramme ou de diagramme fini.
Design de servicesLe design de services s'intéresse à la fonctionnalité et à la forme des services du point de vue de l'utilisateur, l'usager, le client. Il a pour objectif de s'assurer que l'interface du service est utile, utilisable et désirable du point de vue du client et efficace, performante et - quand il s'agit d'un produit commercialisé - « différenciante » du point de vue du fournisseur. Souvent, un service va être associé à un objet ou à des objets permettant l'interaction avec l'utilisateur (borne, application sur téléphone mobile, service Web.
FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
Théorie des catégories supérieuresEn mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
Quasi-catégorieEn mathématiques, plus précisément en théorie des catégories, une quasi-catégorie est une généralisation de la notion de catégorie. L'étude de telles généralisations est connue sous le nom de théorie des catégories supérieures. Les quasi-catégories ont été introduites par et Vogt en 1973. André Joyal a fait beaucoup progresser l'étude des quasi-catégories en montrant qu’il existe un analogue pour les quasi-catégories de la plupart des notions de base de la théorie des catégories et même de certaines notions et théorèmes d’un niveau plus avancé.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
2-catégorieEn mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories.