Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Spineurvignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).