FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Foncteur exactEn mathématiques, un foncteur exact est un foncteur qui commute aux limites inductives et projectives. De manière équivalente, c'est un foncteur qui préserve les suites exactes de catégories abéliennes et c'est de cela que vient la dénomination. Des foncteurs de ce type apparaissent naturellement en homologie et d'une manière générale en théorie des catégories, où leurs propriétés permettent des calculs élégants. Le « défaut d'exactitude » est mesuré par les foncteurs dérivés, par exemple les foncteurs Tor et Ext.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
Foncteur HomEn mathématiques, le foncteur Hom est un foncteur associé aux morphismes de la catégorie des ensembles. Il est central en théorie des catégories, notamment du fait de son rôle dans le lemme de Yoneda et parce qu'il permet de définir le foncteur Ext. Soit une catégorie localement petite. Pour tout couple d'objets A et B dans cette catégorie, un morphisme induit une fonction pour tout objet X.
Fibred categoryFibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull-backs) of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Foncteur dérivéEn mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.