Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
CoquaternionEn mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton inventés en 1843, ils forment un espace vectoriel réel à quatre dimensions muni d'une opération multiplicative. À la différence de l'algèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents. L'ensemble forme une base. Les produits de coquaternion de ces éléments sont Avec ces produits l'ensemble est isomorphe au groupe diédral d'un carré.
Split-biquaternionIn mathematics, a split-biquaternion is a hypercomplex number of the form where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring.
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.
Anneau quotientEn mathématiques, un anneau quotient est un anneau qu'on construit sur l'ensemble quotient d'un anneau par un de ses idéaux bilatères. Soit A un anneau. L'addition et la multiplication de A sont compatibles avec une relation d'équivalence sur A si (et seulement si) celle-ci est de la forme : x ~ y ⇔ x – y ∈ I, pour un certain idéal bilatère I de A. On peut alors munir l'ensemble quotient A/I de l'addition et de la multiplication quotients de celles de A : Ceci munit A/I d'une structure d'anneau, appelé l'anneau quotient de A par I (son groupe additif est le groupe quotient de (A, +) par I).
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Résonance paramagnétique électroniquevignette|redresse=1.25|Spectromètre à résonance paramagnétique électronique La résonance paramagnétique électronique (RPE), résonance de spin électronique (RSE), ou en anglais electron spin resonance (ESR) désigne la propriété de certains électrons à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique. Seuls les électrons non appariés (ou électrons célibataires), présents dans des espèces chimiques radicalaires ainsi que dans les sels et complexes des métaux de transition, présentent cette propriété.
Théorie des supercordesthumb|Vue d'artiste de la théorie des supercordes. La théorie des supercordes est une tentative pour expliquer l'existence de toutes les particules et forces fondamentales de la nature, en les modélisant comme les vibrations de minuscules cordes supersymétriques. Au début du , elle est considérée comme la plus féconde des théories pour une gravité quantique, même si elle souffre des mêmes défauts que la théorie des cordes en raison de l'impossibilité de la vérifier par l'expérimentation.