Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Régression non paramétriqueLa régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données. La régression non paramétrique exige des tailles d'échantillons plus importantes que celles de la régression basée sur des modèles paramétriques parce que les données doivent fournir la structure du modèle ainsi que les estimations du modèle. On dispose de données numériques que l'on suppose corrélées.
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
Déclaration des droits (États-Unis)La Déclaration des droits (United States Bill of Rights) est l'ensemble constitué des dix premiers amendements à la Constitution américaine. Elle limite les pouvoirs du gouvernement fédéral et garantit les libertés de presse, de parole, de religion, de réunion, le droit de porter des armes, et le droit de propriété. Adoptée par la Chambre des représentants le et le Congrès le suivant, elle est ratifiée progressivement par les États fédérés, et prend effet le , date de la ratification par la Virginie.
PrévisionLa prévision est une . D'une façon générale, . Dans un sens plus restrictif, en épistémologie contemporaine, la prévision se distingue de la prédiction, qui est issue d'une loi ou théorie scientifique hautement confirmée ou corroborée, tandis que la prévision découle d'hypothèses ou de conjectures moins assurées. La prévisibilité et la prédictibilité désignent la possibilité que certains événements ou phénomènes soient prévus ou prédits à partir d'une hypothèse ou d'une théorie scientifique et de conditions initiales appropriées.
Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Science des matériauxLa science des matériaux repose sur la relation entre les propriétés, la morphologie structurale et la mise en œuvre des matériaux qui constituent les objets qui nous entourent (métaux, polymères, semi-conducteurs, céramiques, composites, etc.). Elle se focalise sur l'étude des principales caractéristiques des matériaux, ainsi que leurs propriétés mécaniques, chimiques, électriques, thermiques, optiques et magnétiques. La science des matériaux est au cœur de beaucoup des grandes révolutions techniques.