Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Algebra representationIn abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.
Représentation adjointeEn mathématiques, il existe deux notions de représentations adjointes : la représentation adjointe d'un groupe de Lie sur son algèbre de Lie, la représentation adjointe d'une algèbre de Lie sur elle-même. Alors que la première est une représentation de groupe, la seconde est une représentation d'algèbre. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; l'automorphisme intérieur de sur lui-même, donné par .
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Poids (théorie des représentations)Dans le domaine mathématique de la théorie des représentations, un poids d'une algèbre A sur un corps F est un morphisme d'algèbres de A vers F ou, de manière équivalente, une représentation de dimension un de A sur F. C'est l'analogue algébrique d'un caractère multiplicatif d'un groupe. L'importance du concept découle cependant de son application aux représentations des algèbres de Lie et donc aussi aux représentations des groupes algébriques et des groupes de Lie.
Special linear Lie algebraIn mathematics, the special linear Lie algebra of order n (denoted or ) is the Lie algebra of matrices with trace zero and with the Lie bracket . This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group. The Lie algebra is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.
Trajectoirevignette|En physique la trajectoire est une ligne décrit après le déplacement d'un mobile En mathématiques et en sciences physiques, la trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité. En biologie et en écologie la même définition s'applique pour les êtres vivants. En sciences humaines et sociales, une trajectoire est la succession avec l’âge des passages d’un individu d’un état ou d’une position sociale à l’autre.
Recherche scientifiquevignette|Une laborantine du Laboratoire fédéral d'essai des matériaux et de recherche (EMPA) à Saint-Gall, en 1964. La recherche scientifique est, en premier lieu, l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, on utilise également ce terme dans le cadre social, économique, institutionnel et juridique de ces actions. thumb|Allégorie de la Recherche, bronze par , 1896, Thomas Jefferson Building.