Théorème de convergence dominéeEn mathématiques, et plus précisément en analyse, le théorème de convergence dominée est un des théorèmes principaux de la théorie de l'intégration de Lebesgue. Soit une suite de fonctions continues à valeurs réelles ou complexes sur un intervalle de la droite réelle. On fait les deux hypothèses suivantes : la suite converge simplement vers une fonction ; il existe une fonction continue telle queAlors L'existence d'une fonction intégrable majorant toutes les fonctions f équivaut à l'intégrabilité de la fonction (la plus petite fonction majorant toutes les fonctions f).
Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Point critique (mathématiques)En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Théorème de convergence monotoneEn mathématiques, le théorème de convergence monotone (ou théorème de Beppo Levi) est un résultat de la théorie de l'intégration de Lebesgue. Il permet de démontrer le lemme de Fatou et le théorème de convergence dominée. Ce théorème indique que pour une suite croissante de fonctions mesurables positives on a toujours la convergence de la suite de leurs intégrales vers l'intégrale de la limite simple. Le théorème autorise donc, pour une telle suite de fonctions, à intervertir les symboles et .
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Matrice hessienneEn mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.