Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Densité de courantLa densité de courant, ou densité volumique de courant, est un vecteur qui décrit le courant électrique à l'échelle locale, en tout point d'un système physique. Dans le Système international d'unités, son module s'exprime en ampères par mètre carré ( ou ). À l'échelle du système tout entier il s'agit d'un champ de vecteurs, puisque le vecteur densité de courant est défini en tout point.
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Courant électriqueUn courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Équation aux dérivées partielles hyperboliqueEn mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.