Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Bayesian linear regressionBayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled ) conditional on observed values of the regressors (usually ).
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Méthode des moments généraliséeEn statistique et en économétrie, la méthode des moments généralisée (en anglais generalized method of moments ou GMM) est une méthode générique pour estimer les paramètres d'un modèle statistique qui s'appuie sur un certain nombre de conditions sur les moments d'un modèle. Habituellement, cette méthode est utilisée dans un contexte de modèle semi-paramétrique, où le paramètre étudié est de dimension finie, alors que la forme complète de la fonction de distribution des données peut ne pas être connue (de ce fait, l'estimation par maximum de vraisemblance n'est pas applicable).