Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Espace de de SitterEn mathématiques, l’espace de de Sitter est un espace maximalement symétrique en quatre dimensions de courbure positive en signature . Il généralise en ce sens la 4-sphère au-delà de la géométrie euclidienne. Le nom vient de Willem de Sitter. La dimension 4 est très utilisée car elle correspond à la relativité générale. En fait, il existe en dimension entière . On peut définir l'espace de de Sitter comme une sous-variété d'un espace de Minkowski généralisé à une dimension supplémentaire.
Groupe de renormalisationEn physique statistique, le groupe de renormalisation est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par élimination de degrés de liberté tout en laissant la fonction de partition invariante. Il s'agit plus exactement d'un semi-groupe, les transformations n'étant pas inversibles. Le groupe de renormalisation permet de calculer les exposants critiques d'une transition de phase. Il permet aussi de prédire la transition Berezinsky-Kosterlitz-Thouless.
Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Fonction multivaluéeframe|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .
Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Point stationnaire350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.
Échange de clévignette|Paramètres de configuration pour la machine de cryptographie Enigma, en fonction du jour, du mois, etc. On peut lire sur ce document plusieurs mises en garde concernant son caractère secret. Avant l'avènement de la cryptographie moderne, la nécessité de tels mécanismes d'échange de clé constituaient une vulnérabilité majeure. En informatique, et plus particulièrement en cryptologie, un protocole déchange de clé (ou de négociation de clé, ou d'établissement de clé, ou de distribution de clé) est un mécanisme par lequel plusieurs participants se mettent d'accord sur une clé cryptographique.
Graphe d'une fonctionthumb|Représentation du graphe de la fonction . Le graphe d'une fonction f de E dans F est le sous-ensemble G de E×F formé par les couples d'éléments liés par la correspondance : Cet ensemble est appelé le graphe de f parce qu'il permet d'en donner une représentation graphique dans le cas usuel où E et F sont des ensembles de réels : en effet, on peut alors parfois représenter E et F sur deux axes sécants, chaque couple de G peut alors être représenté par un point dans le plan, muni d'un repère défini par les deux axes.