Publication

ON THE DISCRETE LOGARITHM PROBLEM IN FINITE FIELDS OF FIXED CHARACTERISTIC

Concepts associés (35)
Nombre primaire
En mathématiques, plus précisément en arithmétique, un nombre primaire, également appelé puissance première, est une puissance à exposant entier positif non nul d'un nombre premier. Par exemple : 5=51, 9=32 et 16=24 sont des nombres primaires, alors que 6=2×3, 15=3×5 et 36=62=22×32 n'en sont pas. Les vingt plus petits nombres primaires sont : 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41. Les puissances premières sont tous les nombres entiers positifs qui ne sont divisibles que par un seul nombre premier.
Polynôme cyclotomique
En mathématiques, plus précisément en algèbre commutative, le polynôme cyclotomique usuel associé à un entier naturel n est le polynôme unitaire dont les racines complexes sont les racines primitives n-ièmes de l'unité. Son degré vaut φ(n), où φ désigne la fonction indicatrice d'Euler. Il est à coefficients entiers et irréductible sur Q.
Théorie des corps de classes locaux
En mathématiques, la théorie des corps de classes locaux ou théorie du corps de classes local est l'étude en théorie des nombres des extensions abéliennes des corps locaux. Cette théorie peut être considérée comme achevée. Au début du , après les travaux de Teiji Takagi et Emil Artin qui complétèrent la théorie des corps de classes, les résultats locaux se déduisaient des résultats globaux. Actuellement, c'est le point de vue inverse qui est le plus répandu : les résultats locaux sont établis au préalable puis permettent de déduire les correspondances globales.
Critère d'Eisenstein
En mathématiques, le « critère d'Eisenstein », publié auparavant par Theodor Schönemann, donne des conditions suffisantes pour qu'un polynôme à coefficients entiers soit irréductible sur le corps des nombres rationnels. Considérons un polynôme P(X) à coefficients entiers, que l'on note Supposons qu'il existe un nombre premier p tel que : p divise ; p ne divise pas a ; p ne divise pas a. Alors P(X) est irréductible dans l'anneau des polynômes à coefficients rationnels.
Anneau fini
En mathématiques, un anneau fini est un anneau qui a un nombre fini d'éléments. Chaque corps fini est un exemple d’anneau fini, et la partie additive de chaque anneau fini est un exemple de groupe fini et abélien, mais la notion même d’anneaux finis a une histoire plus récente. Comme les anneaux sont plus rigides que les groupes, la classification des anneaux finis est plus simple que celle des groupes finis.
Nombre premier
vignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Polynôme formel
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Logarithme discret
Le logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Tour de corps
En mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Théorie des corps de classes
vignette|Les racines cinquièmes de l'unité dans le plan complexe. Ajouter ces racines aux nombres rationnels génère une extension abélienne. En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c'est-à-dire galoisiennes et de groupe de Galois commutatif, d'un corps commutatif donné. Plus précisément, il s'agit de décrire et de construire ces extensions en termes de propriétés arithmétiques du corps de base lui-même.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.