Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Fonction de LiapounovUne fonction de Liapounov est une fonction qui permet d'estimer la stabilité d'un point d'équilibre (ou, plus généralement, d'un mouvement, c'est-à-dire d'une solution maximale) d'une équation différentielle. Soit une fonction et un système dynamique, avec un point d'équilibre de ce système, c'est-à-dire que . Par un changement de variable , on peut se ramener au cas où l'origine est un point d'équilibre (). Une fonction est une fonction candidate de Liapounov si pour un certain voisinage de l'origine.
Exposant de LiapounovDans l'analyse d'un système dynamique, l'exposant de Liapounov permet de quantifier la stabilité ou l'instabilité de ses mouvements. Un exposant de Liapounov peut être soit un nombre réel fini, soit ∞ ou –∞. Un mouvement instable a un exposant de Liapounov positif, un mouvement stable correspond à un exposant de Liapounov négatif. Les mouvements bornés d'un système linéaire ont un exposant de Liapounov négatif ou nul. L'exposant de Liapounov peut servir à étudier la stabilité (ou l'instabilité) des points d'équilibre des systèmes non linéaires.
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Trace (algèbre)En algèbre linéaire, la trace d'une matrice carrée A est définie comme la somme de ses coefficients diagonaux et souvent notée Tr(A). La trace peut être vue comme une forme linéaire sur l'espace vectoriel des matrices. Elle vérifie l'identité : Tr(AB) = Tr(BA), et est en conséquence invariante par similitude. De façon voisine, si u est un endomorphisme d'un espace vectoriel de dimension finie sur un corps commutatif K, on peut définir la trace de l'opérateur u, par exemple comme trace de sa matrice dans n'importe quelle base.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Matrice nilpotenteUne matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d'endomorphisme nilpotent sur un espace vectoriel de dimension finie. Cette notion facilite souvent le calcul matriciel. En effet, si le polynôme caractéristique d'une matrice est scindé (c'est-à-dire décomposable en produit de facteurs du premier degré, ce qui est le cas par exemple si le corps des coefficients est algébriquement clos), alors l'endomorphisme associé possède une décomposition de Dunford.