Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Critère de Nyquistvignette|droite|Diagramme de Nyquist de la fonction de transfert . Le critère de stabilité de Nyquist est une règle graphique utilisée en automatique et en théorie de la stabilité, qui permet de déterminer si un système dynamique est stable. Il a été formulé indépendamment par deux électrotechniciens : l'Allemand Felix Strecker de Siemens en 1930 et l'Américain Harry Nyquist des Laboratoires Bell en 1932.
Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Nonlinear controlNonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback, feedforward, or signal filtering. The system to be controlled is called the "plant".
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Système à minimum de phaseEn traitement du signal et en théorie du contrôle, un système linéaire ne dépendant pas du temps est dit à minimum de phase si ce système et son inverse sont stables et causaux. On parle aussi de filtre à minimum de phase. Pour un système discret, en supposant que la fonction de transfert est rationnelle, ce système est à minimum de phase si et seulement si tous les pôles et zéros de sont à l'intérieur du disque unité. Pour un système continu, la condition pour que ce système soit à minimum de phase est que les pôles et zéros de transmission appartiennent au demi-plan gauche du plan complexe.