Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Processus de WienerEn mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Mesure de HaarEn mathématiques, une mesure de Haar sur un groupe localement compact est une mesure de Borel quasi-régulière non nulle invariante par translation à gauche. Autrement dit, pour toute partie borélienne B de G, et pour tout g dans G, on a : L'existence d'une mesure de Haar est assurée dans tout groupe localement compact. Elle est finie sur les parties compactes de G. De plus, toute mesure borélienne complexe invariante par translations à gauche s'écrit où est un nombre complexe.
Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Mesure régulièreEn théorie de la mesure, une mesure régulière est une mesure sur un espace topologique séparé mesuré qui vérifie deux propriétés qui lient mesure et topologie. Quelques énoncés qui posent des conditions topologiques assez couramment remplies permettent de garantir la régularité d'une mesure de Borel. Une mesure (positive) définie sur une tribu contenant la tribu borélienne d'un espace séparé X est dite régulière lorsqu'elle est à la fois intérieurement régulière et extérieurement régulière, c'est-à-dire lorsque : pour tout élément de la tribu, ; pour tout élément de la tribu, .
Mesure de LebesgueLa mesure de Lebesgue est une mesure qui étend le concept intuitif de volume à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue. Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice.
Théorie supersymétrique de la dynamique stochastiqueLa théorie supersymétrique de la dynamique stochastique (TSDS) est une théorie exacte des équations différentielles (partielles) stochastiques (EDS). Elle représente une classe de modèles mathématiques très large qui décrit, en particulier, tous les systèmes dynamiques à temps continu, avec et sans bruit.
Rough pathIn stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available. Rough path theory is focused on capturing and making precise the interactions between highly oscillatory and non-linear systems. It builds upon the harmonic analysis of L.