Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
Moyenne géométriqueEn mathématiques, la moyenne géométrique est un type de moyenne. La moyenne géométrique de deux nombres positifs a et b est le nombre positif c tel que : Cette égalité étant une proportion, ceci justifie l'autre appellation « moyenne proportionnelle » de la moyenne géométrique. vignette|La moyenne géométrique des côtés d'un rectangle est donnée par un carré de même aire. Elle est construite par un cercle tangent aux deux cercles définis par les côtés du rectangle et les séparant.
Propriété publiquealt=Exemple de propriété publique|vignette Au Canada, la propriété publique est la propriété de l'État ou entité assimilable, par opposition à la propriété privée des particuliers, des communautés de particuliers et des entreprises. Plusieurs propriétés publiques sont librement accessibles au public. On peut citer les bibliothèques, les parcs, les forêts, les routes, les musées à certaines dates, etc.
Parsing expression grammarIn computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Énergie interneL’énergie interne d’un système thermodynamique est l'énergie qu'il renferme. C'est une fonction d'état extensive, associée à ce système. Elle est égale à la somme de l’énergie cinétique de chaque entité élémentaire de masse non nulle et de toutes les énergies potentielles d’interaction des entités élémentaires de ce système. En fait, elle correspond à l'énergie intrinsèque du système, définie à l'échelle microscopique, à l'exclusion de l'énergie cinétique ou potentielle d'interaction du système avec son environnement, à l'échelle macroscopique.
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
Extensivité et intensivité (physique)Les grandeurs extensives et intensives sont des catégories de grandeurs physiques d'un système physique : une propriété est « intensive » si sa valeur ne dépend pas de la taille du système (en particulier, si sa valeur est la même en tout point d'un système homogène) : par exemple, la température ou la pression ; une propriété est « extensive » si elle est proportionnelle à une quantité caractéristique du système : par exemple, la masse ou le volume.
Espace des positions et espace des momentsEn physique et en géométrie, espace des positions et espace des moments sont deux espaces vectoriels étroitement liés, souvent tridimensionnels, mais en général pouvant être de toute dimension finie. L'espace des positions (également espace réel ou espace des coordonnées) est l'ensemble de tous les vecteurs de position , qui ont les dimensions d'une longueur ; un vecteur de position définit un point dans l'espace (si le vecteur position d'une particule ponctuelle varie avec le temps, il tracera un chemin, la trajectoire d'une particule).
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.