Forme bilinéaire symétriqueEn algèbre linéaire, une forme bilinéaire symétrique est une forme bilinéaire qui est symétrique. Les formes bilinéaires symétriques jouent un rôle important dans l'étude des quadriques. Soit V un espace vectoriel de dimension n sur un corps commutatif K. Une application est une forme bilinéaire symétrique sur l'espace si () : Les deux derniers axiomes impliquent seulement la linéarité par rapport à la « première variable » mais le premier permet d'en déduire la linéarité par rapport à la « deuxième variable ».
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.
Fonction Lvignette|Représentation de la fonction ζ de Riemann, exemple le plus classique de fonction L En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration.
Formules pour les nombres premiersEn mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux.
Forme quadratiquethumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur.
Forme modulaire de HilbertEn mathématiques, une forme modulaire de Hilbert est une généralisation des formes modulaires aux fonctions de deux variables ou plus. C'est une fonction analytique sur le produit de m demi-plans supérieurs satisfaisant un certain type d'équation fonctionnelle. Soit F un corps totalement réel de degré m sur le corps des rationnels. Soit les plongements réels de F. On définit ainsi une application Soit l'anneau des entiers de F. Le groupe est appelé le groupe modulaire de Hilbert plein.
Nombre de Mersenne premiervignette|droite|Le moine français Marin Mersenne (1588-1648) En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits.
Siegel modular formIn mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.
Groupe modulaireEn mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.