Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Fluide newtonienOn appelle fluide newtonien (en hommage à Isaac Newton) un fluide dont la loi contrainte – vitesse de déformation est linéaire. La constante de proportionnalité est appelée viscosité. Viscosité L’équation décrivant le « comportement newtonien » en description eulérienne est : où : est la contrainte de cisaillement exercée par le fluide (à l'origine des forces de traînée), exprimée en Pa ; est la viscosité dynamique du fluide — une constante de proportionnalité caractéristique du matériau, en ; est le gradient de vitesse perpendiculaire à la direction de cisaillement, en s−1.
Fluide (matière)Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les liquides, les gaz et les plasmas. Gaz et plasmas sont très compressibles, tandis que les liquides le sont très peu (à peine plus que les solides). La transition de l'état liquide à l'état gazeux (ou réciproquement) est en général de premier ordre, c'est-à-dire brusque, discontinue.
Géométrie analytiqueLa géométrie analytique est une approche de la géométrie dans laquelle les objets sont décrits par des équations ou des inéquations à l'aide d'un système de coordonnées. Elle est fondamentale pour la physique et l'infographie. En géométrie analytique, le choix d'un repère est indispensable. Tous les objets seront décrits relativement à ce repère. Repérage dans le plan et dans l'espace Le terme de géométrie analytique, par opposition à la géométrie synthétique, se réfère aux méthodes d'analyse et synthèse pratiquées par les géomètres grecs.
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Portance (aérodynamique)La portance aérodynamique est la composante de la force subie par un corps en mouvement dans un fluide qui s'exerce perpendiculairement à la direction du mouvement (au vent relatif). Cela concerne les aérodynes (engins plus denses que l'air). lang=fr |vignette |304x171px Un corps placé dans un écoulement d'air (ou d'eau) subit une force aérodynamique (ou hydrodynamique). Pour l'analyse, on décompose cette force en une composante parallèle au vent relatif : la traînée (voir aussi Aérodynamique), et une composante perpendiculaire au vent relatif : la portance.
Polygone convexeEn géométrie, un polygone convexe est un polygone simple dont l'intérieur est un ensemble convexe. Un polygone simple qui n'est pas convexe est dit concave. Pour un polygone simple, les propriétés suivantes sont équivalentes : le polygone est convexe, les angles du polygone sont tous inférieurs à 180 degrés, tout segment joignant deux sommets du polygone est inclus dans la composante fermée bornée délimitée par le polygone. Le polygone est toujours entièrement inclus dans un demi-plan dont la frontière porte un côté quelconque du polygone.
Impact cosmiquevignette|Représentation d'artiste d'un astéroïde tombant sur la Terre. Un impact cosmique est la collision entre deux ou plusieurs objets célestes provoquant des effets notables. Dans la majorité des cas un petit corps du système solaire, astéroïde ou comète, entre en collision avec une planète, telle que la Terre. La fréquence des impacts cosmiques dans le système solaire a varié en fonction de l'époque : très fréquents durant la formation du système solaire il y a 4,6 milliards d'années, ils se sont progressivement raréfiés au fur et à mesure que le nombre de corps célestes en circulation diminuait.
Convex polytopeA convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.