Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Cratère d'impactUn cratère d'impact est une dépression de forme plus ou moins circulaire issue de la collision d'un objet sur un autre de taille suffisamment grande pour qu'il ne soit pas complètement détruit par l'impact. Quand la dépression est beaucoup moins profonde que large, on parle d'un bassin d'impact. L'expression est particulièrement utilisée en astronomie pour désigner la dépression résultant d'un impact cosmique, c'est-à-dire de la collision d'objets célestes (un astéroïde ou une comète) percutant la Terre, la Lune ou tout autre corps solide se mouvant dans l'espace et suffisamment gros pour que la puissance de l'impact ne cause pas sa destruction.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Laboratoires BellNokia Bell Labs , plus connus sous l'appellation de Bell Labs, ou Les Bell Labs), furent fondés en 1925 et implantés à Murray Hill dans l'État américain du New Jersey. En 2009, ils font partie du centre de recherche et développement d'Alcatel-Lucent racheté en 2016 par Nokia. Les Laboratoires Bell ont déposé jusqu'en 2012 plus de . Les recherches menées par les Laboratoires Bell ont pris une importance capitale dans des domaines tels que les télécommunications (réseau téléphonique, transmission télévisuelle, communications satellite) et l'informatique (Unix, C et C++).
Forme (géométrie)En géométrie classique, la forme permet d’identifier ou de distinguer des figures selon qu’elles peuvent ou non être obtenues les unes à partir des autres par des transformations géométriques qui préservent les angles en multipliant toutes les longueurs par un même coefficient d’agrandissement. Au sens commun, la forme d’une figure est en général décrite par la donnée combinatoire d’un nombre fini de points et de segments ou d’autres courbes délimitant des surfaces, des comparaisons de longueurs ou d’angles, d’éventuels angles droits et éventuellement du sens de courbure.
Référentiel (physique)En physique, il est impossible de définir une position ou un mouvement par rapport à l'espace « vide ». Un référentiel est un solide (un ensemble de points fixes entre eux) par rapport auquel on repère une position ou un mouvement. Un dispositif servant d'horloge est également nécessaire pour pouvoir qualifier le mouvement et définir la notion de vitesse. Un exemple classique de référentiel est le référentiel terrestre qui est lié à la Terre.
TraînéeEn mécanique des fluides, la traînée ou trainée est la force qui s'oppose au mouvement d'un corps dans un liquide ou un gaz et agit comme un frottement. Mathématiquement, c'est la composante des efforts exercés sur le corps, dans le sens opposé à la vélocité relative du corps par rapport au fluide. En aérodynamique, c'est, avec la portance, l'une des deux grandeurs fondamentales. Le rapport entre portance et traînée s'appelle la finesse.