Point stationnaire350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.
Théorème de Fermat sur les points stationnairesEn analyse réelle, le théorème de Fermat sur les points stationnaires permet, lors de la recherche d'éventuels extrema locaux d'une fonction dérivable, de limiter l'étude aux zéros de sa dérivée et aux bornes de son ensemble de définition. L'énoncé est le suivant : La réciproque est fausse : par exemple, la fonction , en , a une dérivée nulle mais pas d'extremum local. La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1.
Point d'inflexionthumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Processus stationnairePour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps.
Représentation d'étatEn automatique, une représentation d'état permet de modéliser un système dynamique en utilisant des variables d'état. Cette représentation, qui peut être linéaire ou non, continue ou discrète, permet de déterminer l'état du système à n'importe quel instant futur si l'on connaît l'état à l'instant initial et le comportement des variables exogènes qui influent sur le système. La représentation d'état du système permet de connaître son comportement "interne" et pas seulement son comportement "externe" comme c'est le cas avec sa fonction de transfert.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
State space (computer science)In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space.