Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Algebra representationIn abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Représentation projectiveEn mathématiques, plus précisément en théorie des représentations, une représentation projective d'un groupe sur un espace vectoriel est un homomorphisme du groupe dans le groupe projectif linéaire . Soit un groupe, un corps et un -espace vectoriel. désigne le groupe général linéaire de . On note le centre de ; il est isomorphe à . est par définition le groupe quotient : . Il existe deux définitions équivalentes d'une représentation projective de sur : un morphisme ; une application telle qu'il existe une fonction , vérifiant : .
Représentation induite d'un groupe finiEn mathématiques une représentation induite est une représentation d'un groupe canoniquement associée à une représentation de l'un de ses sous-groupes. L'induction est adjointe à gauche de la . Cette propriété intervient dans la formule de réciprocité de Frobenius. Cet article traite le cas des groupes finis. Dans tout l'article, G désigne un groupe fini, H un sous-groupe de G et θ une représentation de H dans un espace vectoriel de dimension finie W sur un corps K. G/H désigne l'ensemble des classes à gauche modulo H.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Linear recurrence with constant coefficientsIn mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1.
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.