Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Coefficient de traînéeEn dynamique des fluides, le coefficient de traînée, dont le symbole normalisé est Cx, CA ou CD ( en anglais, en allemand) fait partie de la famille des coefficients aérodynamiques. C'est un nombre sans dimension qui est utilisé pour quantifier la traînée ou résistance d'un objet dans un fluide (comme, par exemple, l'air ou l'eau). Il est toujours associé à une surface particulière (selon le contexte, appelée maître-couple, surface alaire ou plus généralement surface de référence).
Finesse (aérodynamique)La finesse est une caractéristique aérodynamique définie comme le rapport entre la portance et la traînée. Elle est parfois désignée par le terme de langue anglaise signifiant , c'est-à-dire rapport portance/traînée en français. On peut aussi définir de manière équivalente la finesse comme le rapport des coefficients de portance et de traînée , à condition que ces deux coefficients soient rapportés à la même surface. La finesse d'un aérodyne à voilure fixe est le rapport entre sa portance et sa traînée aérodynamique.
Problème de flot maximumthumb|right|Un exemple de graphe de flot avec un flot maximum. la source est , et le puits . Les nombres indiquent le flot et la capacité. Le problème de flot maximum consiste à trouver, dans un réseau de flot, un flot réalisable depuis une source unique et vers un puits unique qui soit maximum. Quelquefois, on ne s'intéresse qu'à la valeur de ce flot. Le s-t flot maximum (depuis la source s vers le puits t) est égal à la s-t coupe minimum du graphe, comme l'indique le théorème flot-max/coupe-min.
Réseau de flotEn théorie des graphes, un réseau de flot (aussi appelé réseau de transport) est un graphe orienté où chaque arête possède une capacité et peut recevoir un flot (ou flux). Le cumul des flots sur une arête ne peut pas excéder sa capacité. Un graphe orienté est souvent appelé réseau en recherche opérationnelle. Les sommets sont alors appelés des nœuds et les arêtes des arcs. Pour qu'un flot soit valide, il faut que la somme des flots atteignant un nœud soit égale à la somme des flots quittant ce nœud, sauf s'il s'agit d'une source (qui n'a pas de flot entrant), ou d'un puits (qui n'a pas de flot sortant).
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.