Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Mode normaldroite|vignette|248px|Visualisation d'un mode normal de vibration d'une peau de tambour, constitué d'une membrane circulaire souple attachée rigidement sur la totalité de ses bords. . Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état d'équilibre ; une fréquence naturelle de vibration est alors associée à cette forme.
Vibrationthumb Une vibration est un mouvement d'oscillation mécanique autour d'une position d'équilibre stable ou d'une trajectoire moyenne. La vibration d'un système peut être libre ou forcée. Tout mouvement vibratoire peut être défini par les caractéristiques suivantes : un degré de liberté ; deux ou plusieurs degrés de liberté ; Une masse libre dans l'espace a naturellement six degrés de liberté : trois translations (notées Tx, Ty, Tz) ; trois rotations (notées Rx, Ry, Rz).
Vibration moléculaireUne vibration moléculaire se produit lorsque les atomes d'une molécule sont dans un mouvement périodique pendant que la molécule dans son ensemble subit un mouvement de translation et de rotation. La fréquence du mouvement périodique est appelée fréquence de vibration. Une molécule non linéaire constituée de n atomes possède 3n-6 modes normaux de vibration, alors qu'une molécule linéaire n'en possède que 3n-5, puisque la rotation autour de son axe moléculaire ne peut être observée.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Opérateur adjointEn mathématiques, un opérateur adjoint est un opérateur sur un espace préhilbertien qui est défini, lorsque c'est possible, à partir d'un autre opérateur a et que l'on note a*. On dit aussi que a* est l'adjoint de a. Cet opérateur adjoint permet de faire passer l'opérateur a de la partie gauche du produit scalaire définissant l'espace préhilbertien à la partie droite du produit scalaire. Il s'agit donc d'une généralisation de la notion de matrice adjointe à des espaces de dimension infinie.