Intégrale de GaussEn mathématiques, une intégrale de Gauss est l'intégrale d'une fonction gaussienne sur l'ensemble des réels. Sa valeur est reliée à la constante π par la formule où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. Cette formule peut être obtenue grâce à une intégrale double et un changement de variable polaire. Sa première démonstration connue est donnée par Pierre-Simon de Laplace.
Équation différentielle homogèneL'expression équation différentielle homogène a deux significations totalement distinctes et indépendantes. Une équation différentielle du premier ordre mais non nécessairement linéaire est dite homogène de degré n si elle peut s'écrire sous la forme où F est une fonction homogène de degré n, c'est-à-dire vérifiant Autrement dit (en posant h(u)=F(1,u)), c'est une équation qui s'écrit Le cas le plus étudié est celui où le degré d'homogénéité est 0, à tel point que dans ce cas on ne mentionne même pas le degré.
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
DifférentielleEn analyse fonctionnelle et vectorielle, on appelle différentielle d'ordre 1 d'une fonction en un point (ou dérivée de cette fonction au point ) la partie linéaire de l'accroissement de cette fonction entre et lorsque tend vers 0. Elle généralise aux fonctions de plusieurs variables la notion de nombre dérivé d'une fonction d'une variable réelle, et permet ainsi d'étendre celle de développements limités. Cette différentielle n'existe pas toujours, et une fonction possédant une différentielle en un point est dite différentiable en ce point.
Équation différentielle à retardEn mathématiques, les équations différentielles à retard (EDR) sont un type d'équation différentielle dans laquelle la dérivée de la fonction inconnue à un certain instant est donnée en fonction des valeurs de la fonction aux instants précédents. Les EDR sont également appelés des systèmes à retard, systèmes avec effet secondaire ou temps mort, systèmes héréditaires, équations à argument déviant, ou équations aux différences différentielles .
Closed and exact differential formsIn mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d. For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α.
Intégrale de Stieltjesvignette|droite|Thomas Stieltjes (1856-1894). L'intégrale de Stieltjes constitue une généralisation de l'intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f et g définies sur un intervalle fermé [a, b], ainsi qu'une subdivision a = x < x < x < ... < x = b de cet intervalle. Si la somme de Riemann avec ξi ∈ [x, x], tend vers une limite S lorsque le pas max(x – x) tend vers 0, alors S est appelée l'intégrale de Stieltjes (ou parfois l'intégrale de Riemann-Stieltjes) de la fonction f par rapport à g.
Continuité uniformeEn topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Leibniz integral ruleIn calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative. It is named after Gottfried Leibniz.