Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Énergie de DirichletEn mathématiques le terme d'énergie, ou énergie de Dirichlet est employé pour désigner une quantité numérique associée à une application : même si la forme précise varie selon les contextes, il s'agit de l'intégrale du carré de sa dérivée. L'énergie est une quantité associée à des problèmes de minimisation : résolution du problème de Dirichlet en théorie du potentiel, recherche de géodésiques ou d'applications harmoniques en géométrie riemannienne. En théorie du signal il existe une énergie de forme voisine mais ne faisant pas apparaître de dérivée.
NURBSLes B-splines rationnelles non uniformes, plus communément désignées par leur acronyme anglais NURBS (pour Non-Uniform Rational Basis Splines), correspondent à une généralisation des B-splines car ces fonctions sont définies avec des points en coordonnées homogènes. Le principal intérêt de ces courbes NURBS est qu'elles parviennent même à ajuster des courbes qui ne peuvent pas être représentées par des B-splines uniformes.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.