Suite de compositionLa notion de suite de composition est une notion de théorie des groupes. Elle permet, dans un sens qui sera précisé, de considérer un groupe comme « composé » de certains de ses sous-groupes. Soient G un groupe et e son élément neutre. On appelle suite de composition de G toute suite finie (G_0, G_1, ..., G_r) de sous-groupes de G telle queet que, pour tout i ∈ {0, 1, ..., r – 1}, G_i+1 soit sous-groupe normal de G_i.Les quotients G_i/G_i+1 sont appelés les quotients de la suite. Soient Σ_1 = (G_0, G_1, ...
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Objet exceptionnelDe nombreuses branches des mathématiques étudient des objets d'un certain type et démontrent à leur sujet un . Ces classifications produisent en général des suites infinies d’objets, et un nombre fini d’exceptions n’appartenant à aucune de ces suites, et connues sous le nom d’objets exceptionnels. Ces objets jouent souvent un rôle important dans le développement de la théorie, et les objets exceptionnels de divers domaines ont fréquemment des relations les uns avec les autres.
Sous-groupe de BorelDans la théorie des groupes algébriques, un sous-groupe de Borel d'un groupe algébrique G est un sous-groupe algébrique résoluble, fermé, connexe et maximal pour ces propriétés. Par exemple, dans le groupe général linéaire GLn (matrices inversibles n×n), le sous-groupe des matrices triangulaires supérieures inversibles est un sous-groupe de Borel. Pour les groupes réalisés sur des corps algébriquement clos, il existe une seule classe de conjugaison de sous-groupes de Borel.
Corps algébriquement closEn mathématiques, un corps commutatif K est dit algébriquement clos si tout polynôme de degré supérieur ou égal à un, à coefficients dans K, admet (au moins) une racine dans K. Autrement dit, c'est un corps qui n'a pas d'extension algébrique propre. Si K est algébriquement clos, tout polynôme non constant à coefficients dans K est scindé dans K, c'est-à-dire produit de polynômes du premier degré. Le nombre de ses racines dans K (comptées avec leur ordre de multiplicité) est donc exactement égal à son degré.
Représentation admissibleEn mathématiques, les représentations admissibles forment une classe de représentations qui se comportent bien utilisée dans la théorie des représentations des groupes de Lie réductifs et des groupes localement compacts totalement discontinus. Elles ont été introduits par Harish-Chandra. Soit G un groupe de Lie connexe réductif réel ou complexe. Soit K un sous-groupe compact maximal. Une représentation continue (π, V ) de G sur un espace de Hilbert complexe V est dite admissible si la restriction de π à K est unitaire et si chaque représentation unitaire irréductible de K y figure avec une multiplicité finie.
Lie group–Lie algebra correspondenceIn mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and (see real coordinate space and the circle group respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other.
Corps quasi-algébriquement closEn mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0.
Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.