Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Phénomène de Rungedroite|vignette|La courbe rouge est la fonction de Runge ; la courbe bleue est le polynôme interpolateur de degré 5 et la courbe verte est le polynôme interpolateur de degré 9. L'approximation est de plus en plus mauvaise. Dans le domaine mathématique de l'analyse numérique, le phénomène de Runge se manifeste dans le contexte de l'interpolation polynomiale, en particulier l'interpolation de Lagrange. Avec certaines fonctions (même analytiques), l'augmentation du nombre n de points d'interpolation ne constitue pas nécessairement une bonne stratégie d'approximation.
Fonction elliptique de WeierstrassEn analyse complexe, les fonctions elliptiques de Weierstrass forment une classe importante de fonctions elliptiques c'est-à-dire de fonctions méromorphes doublement périodiques. Toute fonction elliptique peut être exprimée à l'aide de celles-ci. Supposons que l'on souhaite fabriquer une telle fonction de période 1. On peut prendre une fonction quelconque, définie sur [0, 1] et telle que f(0) = f(1) et la prolonger convenablement. Un tel procédé a des limites. Par exemple, on obtiendra rarement des fonctions analytiques de cette façon.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Interpolation newtonienneEn analyse numérique, l'interpolation newtonienne, du nom d'Isaac Newton, est une méthode d'interpolation polynomiale permettant d'obtenir le polynôme de Lagrange comme combinaison linéaire de polynômes de la « base newtonienne ». Contrairement à l'interpolation d'Hermite par exemple, cette méthode ne diffère de l'interpolation lagrangienne que par la façon dont le polynôme est calculé, le polynôme d'interpolation qui en résulte est le même. Pour cette raison on parle aussi plutôt de la forme de Newton du polynôme de Lagrange.
Fonction de BesselEn mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli.
Polynôme de TchebychevEn mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Polynôme trigonométriqueEn mathématiques, un polynôme trigonométrique (ou polynôme trigonométrique complexe) P est une fonction, définie par une somme d'exponentielles : où les coefficients de P sont complexes ou réels. En particulier, on peut exprimer tout polynôme trigonométrique comme somme de sinus et de cosinus : Les deux familles de coefficients (ak) et (bk)k peuvent être déduites de (ck)k, et vice versa : P est une fonction réelle si et seulement si les (ak)k et (bk) sont réels. Les coefficients (ak) sont tous nuls si et seulement si le polynôme est impair.
Classical modular curveIn number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y) = 0, such that (x, y) = (j(nτ), j(τ)) is a point on the curve. Here j(τ) denotes the j-invariant. The curve is sometimes called X0(n), though often that notation is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as Φn(x, x).
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.